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Background and motivation

Random matrices: Wishart

Random matrix theory dated back to Multivariate Statistical Analysis by Wishart in 1928.

Let X1, ...,Xn be independent N(0,Σ)-random vectors in Rp , and let X = [X1, ...,Xn] be the
p × n data matrix.

The distribution of a p × p random matrix

M = XXT

is said the Wishart distribution with n degrees of freedom and covariance matrix Σ and is denoted
by Wp(n,Σ).

For n ≥ p, the probability density function of M is

f (M) =
1

2np/2Γp
(
n
2

)
|Σ|n/2

|M|(n−p−1)/2 exp

(
−

1

2
Tr(Σ−1M)

)
with respect to Lebesque measure on the cone of symmetric positive definite matrices. Here,
Γp(α) is the multivariate gamma function.
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Background and motivation

Random matrices: Hsu

P. Hsu 1939 gave an elegant proof of the joint distribution of eigenvalues of the Wishart matrix

M = XXT .

P. Hsu: On the distribution of roots of certain determinantal equations, Ann. Eugenics, 9,
250-258, 1939.

See also Anderson (1957), An Introduction to Multivariate Statistical Analysis, 1984, 2003, Wiley.
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Background and motivation

Wigner

Though random matrices were first encountered in mathematical statistics by Hsu, Wishart, and
others, intensively study of their properties in connection with nuclear physics began with the
work of Wigner in the 1950s.

See Preface to the first edition, Random Matrices, Madan Lal Mehta

In 1950, Wigner introduced the concept of statistical distribution of nuclear energy levels.

In 1955, Wigner introduced ensembles of random matrices.

In 1956, Wigner derived the famous semicircle law for the Wigner matrices.
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Background and motivation

Dyson

The mathematical foundations of random matrix theory were established in a series of beautiful
papers by Dyson. He introduced the classification of random matrix ensembles according to their
invariance properties under time reversal.

only three different possibilities exist: a system is not time reversal invariant, or a system is time
reversal invariant with the square of the time reversal invariance operator either equal to 1 or −1.

The matrix elements of the corresponding random matrix ensembles are complex, real and
self-dual quaternion, respectively,

The corresponding invariant Gaussian ensembles of Hermitian random matrices are known as the
Gaussian unitary ensemble (GUE), the Gaussian orthogonal ensemble (GOE) and the Gaussian
symplectic ensemble (GSE), in that order.
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Background and motivation

Hua

Random matrix theory, which was first formulated in mathematical statistics, continued to
develop in mathematics independently of the developments in physics.

Important results with regard to the integration measure of invariant random matrix ensembles
were obtained by Hua [1958]. His results of more than a decade of work are summarized in his
book that appeared in 1958 but which remained largely unknown.
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Background and motivation

Figure: Hua Loo Keng
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Background and motivation

Figure: Hsu Pao-Lu
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Background and motivation

Matrix models

Unitary invariant random matrices ensemble with general potential V has been received a lot of
attention in theoretic physics in connection with the so-called matrix models.

Fernandez-Fröhlich-Sokal 1992, Brezin and Zee 1993.

E. Witten, Two dimensional gravity and intersection theory on moduli space, Survey in Diff
Geom. 1, 1991, 243-310.

Kontsevich (CMP1992) used the (complex) partition function for the matrix model with
V (x) = x3 wrt the Gaussian measures on Hermitian random matrices

EGaussian

[
exp(
√
−1x3)

]
to prove Witten’s conjecture in the intersection theory of the moduli space of curves.

Guionnet, Large random matrices: Lectures on macroscopic asymptotics, Springer, 2008.
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Background and motivation

Unitary invariant ensemble

Let V : R→ [0,∞) be a continuous function. Let HN be the set of N × N Hermitian matrices. Consider the
following probability distribution on HN

dµN (M) =
1

ZN

exp(−NTrV (M))dM.

Weyl integration formula (H. Weyl 1926): If f : HN → R invariant under conjugation by unitary matrices, i.e.
f (UMU∗) = f (M), then ∫

HN

f (M)dµN (M) =

∫
RN

f (D(x))ρN (x)dx,

where D(x) = diag(x1, . . . , xN ) is the diagonal matrix of eigenvalues of M, and

ρN (x) =
1

ZN

∏
i<j

|xi − xj |2 exp

(
−N

N∑
i=1

V (xi )

)
.

[H. Weyl (1926, 1946), L. Hsu(1939), L.K. Hua (1958), P. Deift (1999), P. J. Forrester (2005),
Anderson-Guionnet-Zeitouni (2010), etc.]
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Background and motivation

Unitary invariant ensemble

Indeed, consider the matrix transformation

M = UDUT ,

where D = diag(x1, . . . , xN). By Weyl (1926, 1946), Hsu (1939), ... , Hua (1958), the Jacobian
of the above matrix transformation is given Vandermant determinant

∆(x)2 =
∏
i<j

|xi − xj |2

Thus, the joint distribution of the eigenvalues of M is given by

dPN(x1, . . . , xN) =
1

ZN

∏
i<j

|xi − xj |2 exp

(
−N

N∑
i=1

V (xi )

)
.

Xiang-Dong Li AMSS, CAS On the LLN and CLT for Dyson Brownian motion 12 / 55



Background and motivation

β-invariant ensemble

For β ≥ 1, the β-invariant ensemble (log-gas model) has the following distribution density

ρβN(x) =
1

ZβN

∏
1≤i<j≤N

|xi − xj |β exp(−
βN

2

N∑
i=1

V (xi )),

V (x) = x2

2
, β = 1 (GOE), β = 2 (GUE), β = 4 (GSE).

V (x) = x2

2
, β = 8, N = 2, octonions. See Forrester 2005 Book Log Gases and RM, S. Li

Seminair de Probab. 2016.

The Voiculescu free entropy (also called free energy functional) is defined as follows

ΣV (µ) = lim
N→∞

log ZβN
N2

= −
β

2

∫
R2

log |x − y |dµ(x)dµ(y) +

∫
R
V (x)dµ(x).

See Johansson, Biane, and also Ben Arous-Guionnet. In view of this, we have

ρβN(x) =
1

ZβN

exp(−
βN2

2
ΣV (

1

N

N∑
i=1

δxi )).
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Background and motivation

Equilibrium measure

Theorem (Boutet de Monvel-Pastur-Shcherbina 95, Johansson 98)

Suppose V : R→ [0,∞) is continuous and ∃ δ > 0 such that

V (x) ≥ (1 + δ) log(x2 + 1), x >> 1. (1)

Then ∃! µV ∈P(R) with compact support such that

inf
µ∈P(R)

ΣV (µ) = ΣV (µV ),

Moreover, as N →∞, it holds

EβN

[
1

N

N∑
i=1

δxi

]
→ µV .

Indeed, the Euler-Lagrange equation of ΣV implies that µV is the unique solution to

HµV (x) = P.V.

∫
R

dµV (y)

x − y
=

1

2
V ′(x), ∀ x ∈ supp µV ,

where

P.V.

∫
R

µV (y)

x − y
dy

is the Hilbert transform of µV .
The minimizer µV of ΣV is called the equilibrium measure for the β-ensemble with potential V .
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Background and motivation

Wigner’s theorem

In particular, for β = 2 and V (x) = 1
2
x2, that is, GUE, then µV is the famous Wigner semicircle

law.

Theorem (Wigner 1956)

For GUE, we have

EN

[
1

N

N∑
i=1

δxi

]
→ µsc .

where µsc is the semicircle law

µsc (dx) =
1

2π

√
4− x21|x|≤2dx .

For further work, see Bai-Silverstein (2010). Spectral Analysis of Large Dimensional Random
Matrices. Springer.
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Background and motivation

Figure: E. Wigner
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Background and motivation

Figure: E. Wigner’s semicircle law
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Background and motivation

Dyson Brownian motion for Log-gas

F. Dyson 1962: Dyson Brownian motion is the process of the eigenvalues of the Hermitian
Brownian motion.

Theorem (Dyson 1962)

For any value of β > 0, if λN(0) = (λ1
N(0), . . . , λNN(0)) ∈ 4N . Then there exists a unique strong

solution (λN(t))t≥0 to the following SDE

dλiN(t) =

√
2

βN
dW i

t +
1

N

∑
j :j 6=i

1

λiN(t)− λjN(t)
dt,

with initial condition λN(0) such that λN(t) ∈ 4N for all t ≥ 0.

The solution (λN(t))t≥0 is called Dyson’s Brownian motion.
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Background and motivation

Figure: F. Dyson
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Background and motivation

Figure: F. Dyson2
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Background and motivation

Freerman Dyson: Birds and frogs

Some mathematicians are birds, others are frogs. Birds fly high in the air and survey broad vistas
of mathematics out to the far horizon. They delight in concepts that unify our thinking and bring
together diverse problems from different parts of the landscape. Frogs live in the mud below and
see only the flowers that grow nearby. They delight in the details of particular objects, and they
solve problems one at a time. I happen to be a frog, but many of my best friends are birds. The
main theme of my talk tonight is this. Mathematics needs both birds and frogs. Mathematics is
rich and beautiful because birds give it broad visions and frogs give it intricate details.
Mathematics is both great art and important science, because it combines generality of concepts
with depth of structures. It is stupid to claim that birds are better than frogs because they see
farther, or that frogs are better than birds because they see deeper. The world of mathematics is
both broad and deep, and we need birds and frogs working together to explore it.

Notice of AMS 2009 (Einstein Lecture October 2008 cancelled)
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Background and motivation

Figure: Dyson Brownian motion

Xiang-Dong Li AMSS, CAS On the LLN and CLT for Dyson Brownian motion 22 / 55



Background and motivation

Interacting particle system arising in non-equilibrium statistical mechanics

Consider SDE for N-particles X i
N(t) ∈ Rn with interaction W ∈ C1(Rn \ {0}) and external

potential V ∈ C1(Rn):

dX i
N(t) =

∑
j

σij (X
i
N(t))dB i

t −∇V (X i
N(t))dt

−
∑
j 6=i

∇W (X i
N(t)− X j

N(t))dt,

where B = (B1, . . . ,BN) is a Brownian motion on RN .
In particular, the following two interaction functions are the most difficult cases:

Coulumb interaction W (x) = Cn
|x|n−2 , n ≥ 3, where

Cn =
Γ(n/2)

2πn/2(n − 2)
.

Logarithmic Coulumb interaction W (x) = log |x |−1, n = 1, 2.
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Background and motivation

Generalized Dyson Brownian motion

The purpose of this work is to study the generalized Dyson BM, the law of large numbers, the
functional central limit theorem of its empirical measures and the longtime asymptotic beahvior.

First, we introduce the (GDBM)V with generic potentials through matrix-valued diffusion
process.

For β = 1, 2, 4, the matrix-valued diffusion process XN,β
t by solving SDE

dXN,β
t =

√
2

βN
dBN

t − N∇TrV (XN,β
t )dt, (2)

where BN
t denotes the N × N Hermitian Brownian motion.

The eigenvalues process λ1
N(t), . . . , λNN(t) of XN,β

t is called (GDBM)V.
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Background and motivation

From matrix-valued diffusion process to eigenvalues process

Theorem (Li-Li-Xie JSP2020)

Let V : R→ R be a real analytic function. Let XN,β
t be the matrix-valued diffusion process

defined by (2) with β = 1, 2. Then, the eigenvalues λN(t) = (λ1
N(t), . . . , λNN(t)) of XN,β

t satisfy
the SDE

dλiN(t) =

√
2

βN
dW i

t +
1

N

∑
j :j 6=i

1

λiN(t)− λjN(t)
dt −

1

2
V ′(λiN(t))dt, (3)

where the W = (W 1, . . . ,WN) is a Brownian motion on RN .

V ′(x) ≡ 0, Dyson Brownian motion [Dyson, A Brownian-motion model for the eigenvalues
of a random matrix. J. Math. Phys.1962].

V (x) = x2

2
, Dyson Ornstein-Uhlenbeck Brownian motion [T. Chan 1992, Rogers-Shi

1993,Cépa and Lépingle 1997, Fontbona 2004, Guionnet 2008, Anderson, Guionnet and
Zeitouni 2010].

Using Dyson BM, T. Chan (PTRF 1992), Rogers-Shi (PTRF 1993) gave a dynamical proof
of the Wigner theorem. See also Anderson-Guionnet-Zeitouni (2010) and Guionnet (2008).

For β = 4, the eigenvalues λ2N(t) = (λ1
2N(t), . . . , λ2N

2N(t)) of XN,4
t satisfy the same SDE of

(6).
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Background and motivation

Dyson Brownian motion for general external potential

Theorem (Li-Li-Xie JSP2020)

Let V be a C 1 function satisfying the following conditions
(i) For all R > 0, ∃KR > 0, such that ∀x, y ∈ R with |x|, |y | ≤ R,

(x − y)(V ′(x)− V ′(y)) ≥ −KR |x − y |2. (4)

(ii) There exists a constant C > 0 such that

−xV ′(x) ≤ C(1 + |x|2), ∀ x ∈ R. (5)

Then, for all β ≥ 1, and for any given XN (0) ∈ 4N , there exists a unique strong solution (XN (t))t≥0 taking
values in 4N such that

dX i
N (t) =

√
2

βN
dW i

t +
1

N

∑
j 6=i

1

X i
N (t)− X j

N (t)
dt −

1

2
V ′(X i

N (t))dt. (6)

where W is a Brownian motion on RN , ∆N = {(xi )1≤i≤N ∈ RN : x1 < x2 < . . . < xN−1 < xN}.
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Background and motivation

Dyson Brownian motion for general external potential

By Ito’s calculus, for all f ∈ C 2
b (R), we have

d〈LN (t), f 〉 =
1

N

√
2

βN

N∑
i=1

f ′(λi
N (t))dW i

t −
〈
LN (t),V ′f ′

〉
dt

+
1

2N

(
2

β
− 1

)〈
LN (t), f ′′

〉
dt +

1

2

∫
R2

f ′(x)− f ′(y)

x − y
(LN (t, dx)LN (t, dy)dt.

Let

M f
N (t) :=

1

N

√
2

βN

N∑
i=1

f ′(λi
N (t))dW i

t .

Then M is a continuous Ft -martingale with quadratic variation

〈M f
N〉t =

2

βN3

N∑
i=1

∫ t

0

|f ′(λi
N (t))|2dt ≤

2T

βN2
max

x
|f ′(x)|2.

This derives that, if µt is a weak convergence limit of a subsequence of LN (t)→ µt , then we have

d

dt
〈µt , f 〉 =

1

2

∫
R2

f ′(x)− f ′(y)

x − y
dµt(x)dµt(y)−

〈
µt ,V

′f ′
〉
.
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Background and motivation

Dyson Brownian motion for general external potential

More generally, we can consider generalized Dyson Brownian motion (GDBM)

dx i
t = σN (x i

t )dW i
t +

1

N

∑
j 6=i

1

x i
t − x j

t

dt − V ′(x i
t )dt,

and consider the empirical measure

LN (t) =
1

N

N∑
i=1

δ
xit
.

Assume that σN → σ. Then {LN (t), t ∈ [0,T ]} is tight in C([0,T ],P(R)), and its subsequence limits satisfy
the nonlinear McKean-Vlasov equation of the form

d

dt
µt(f ) =

σ2

2
∆µt(f ) +

1

2

∫
R2

∂x f (x)− ∂y f (y)

x − y
µt(dx)µt(dy)−

∫
R
V ′(x)f ′(x)µt(dx).

See

D. A. Dawson, J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting
diffusions, Stochastics 20 (1987), 247-308.

J. Gärtner, On the McKean-Vlasov limit for interacting diffusions, Math. Nachr. 137 (1988), 197-248.
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Law of Large Numbers

Existence of McKean-Vlasov limit as N → ∞

Denote by

LN (t) =
1

N

N∑
i=1

δ
λi
N

(t)
∈P(R),

the spectral measure( also called empirical measure) of λN (t).

Theorem (L-L-X JSP2020)

Let V be a C 2 function satisfying (1), (4) and (5). Suppose

sup
N≥0

∫
R

log(x2 + 1)dLN (0) <∞,

and
LN (0)→ µ ∈P(R) as N →∞.

Then, the family {LN (t), t ∈ [0,T ]} is precompact in C([0,T ], (P(R),weak topo)). Moreover, the limit of
any weakly convergent subsequence of {LN (t), t ∈ [0,T ]} is a weak solution of the McKean-Vlasov equation,

i.e., for all f ∈ C 2
b (R), t ∈ [0,T ],

d

dt

∫
R
f (x)µt(dx) =

1

2

∫
R2

∂x f (x)− ∂y f (y)

x − y
µt(dx)µt(dy)−

1

2

∫
R
V ′(x)f ′(x)µt(dx).
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Law of Large Numbers

Convergence of McKean-Vlasov equation

The above result shows that {LN(t), t ∈ [0,T ]} is tight in C([0,T ],P(R). It is natural to ask

Question

LN(t)→ µ(t) ?

Let

Gt(z) =

∫
R

µt(dx)

z − x

be the Stieltjes transform of µt . Then Gt(z) satisfies the following equation

∂

∂t
Gt(z) = −Gt(z)

∂

∂z
Gt(z)−

1

2

∫
R

V ′(x)

(z − x)2
µt(dx). (7)
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Law of Large Numbers

Convergence of McKean-Vlasov equation

In particular, in the case V (x) = x2, since

−
∫
R

x

(z − x)2
µt(dx) = z

∂

∂z
Gt(z) + Gt(z),

the Stieltjes transform of µt satisfies the complex Burgers equation

∂

∂t
Gt(z) = (−Gt(z) + z)

∂

∂z
Gt(z) + Gt(z). (8)

Chan (1992) and Rogers-Shi (1993) proved that the complex Burgers equation (8) has a unique
solution, and the t →∞ limit exists and

lim
t→∞

Gt(z) = Gµsc (z)

where Gsc (z) is the Stieltjes transform of the Wigner semi-circle law µsc .

This gave a dynamic proof of the Wigner’s theorem, i.e., LN(∞) weakly converges to µsc .

See also Guionnet and Anderson-Guionnet-Zeitouni’s books.
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Law of Large Numbers

Convergence of McKean-Vlasov equation

However, for non quadratic potential V ,
∫
R

V ′(x)

(z−x)2 µt(dx) in (7) cannot be expressed in terms of

Gt(z) and its derivatives with respect to z.

Thus, one cannot derive an analogue of the complex Burgers equation (8) for non quadratic
potential V , and we need to find a new approach to prove the uniqueness of the weak solutions of
the Mckean-Vlasov equation for general potential V .

We need a new method. In next pages, we use the theory of gradient flow on the Wasserstein
space P2(R) and the optimal transportation theory to study this problem.
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Law of Large Numbers

McKean-Vlasov equation

The McKean-Vlasov equation for µt reads: for all f ∈ C2
b (R),

∂

∂t
µt(f ) =

1

2

∫
R

∫
R

f ′(x)− f ′(y)

x − y
dµt(x)dµt(y)−

1

2
µt(f

′V ′). (9)

In the case µt << dx , and denoting ρt = dµt
dx

, then Integrating by parts show that, ρ satisfies the
evolution equation

∂ρt

∂t
=

∂

∂x

(
ρt

(
1

2
V ′ −Hρt

))
, (10)

where

Hρ(x) = P.V.

∫
R

ρ(y)

x − y
dy

is the Hilbert transform of ρ.
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Law of Large Numbers

Otto’s infinite dimensional Riemannian geometry on Wasserstein space

To study the uniqueness and the longtime behavior of the nonlinear Fokker-Planck equation (10),
we first recall Otto’s infinite dimensional Riemannian structure on the Wasserstein space P2(Rd ).

Fix fdx ∈P2(Rd ), the tangent space of P2(Rd ) at fdx is given by

TfdxP2(Rd ) = {s(x)dx : s ∈W 1,2(Rd ,R),

∫
R
sdx = 0}.

By Otto (2001), for all sidx ∈ TfdxP2(Rd ), i = 1, 2, there exist a unique ∇pi ∈W 1,2(Rd ,Rd ),
i = 1, 2, such that

si = −∇.(f∇pi )

In view of this, Otto’s infinite dimensional Riemannian metric on TfdxP2(Rd ) is defined by

gfdv (s1, s2) =

∫
Rd
∇p1 · ∇p2fdx .
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Law of Large Numbers

Voiculescu entropy and entropy dissipation formula

Inspired by Biane-Speicher AIHP 2001, and Carrillo-McCann-Villani RMI 2003 we obtained the
following

Theorem (LLX JSP2020)

Under the condition (5) for C2 function V , the McKean-Vlasov equation (10) for µt is indeed the
gradient flow of the Voiculescu free entropy ΣV (µ) on the Wasserstein space on P2(R), i.e.,

∂tρ = −∇ ·
(
ρ∇

δΣV

δρ

)
. (11)

Indeed,

δΣV

δρ
(x) = V (x)− 2

∫
R

log |x − y |ρ(y)dy .

Free relative entropy (Voiculescu, Biane)

ΣV (µt |µV ) = ΣV (µt)− ΣV (µV ).

Free Fisher information (Voiculescu, Biane)

I(ρ) =

∫
R

[
V ′(x)− 2(Hρ)(x)

]2
ρ(x)dx .
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Law of Large Numbers

Voiculescu entropy and entropy dissipation formula

Theorem (LLX JSP2020)

Let ξ = V ′ − 2Hρ. We have

d

dt
ΣV (µt |µV ) = −2

∫
R

[
V ′(x)− 2(Hρ)(x)

]2
ρ(x)dx,

d2

dt2
ΣV (µt |µV ) = 2

∫
R
V
′′

(x)|V ′(x)− 2Hρ(x)|2ρ(x)dx

+

∫
R2

[
V ′(x)− V ′(y)− 2(Hρ(x)− Hρ(y))

]2

(x − y)2
ρ(x)ρ(y)dxdy .

Theorem (LLX JSP2020)

Suppose that V ∈ C 2(R,R+) and there exists a constant K ∈ R such that V ′′ ≥ K . Then

d2

dt2
ΣV (µt |µV ) ≥ K .

A heuristic proof was given in arxiv2013/2014 using Carrillo-McCann-Villani’s approach, the rigorous proof was
given in JSP2020 based on Biane-Speicher’s a priori estimates to the above McKean-Vlasov equation:
∃M,K1,K2 > 0 which are independent of t such that

suppµt ∈ [−M,M], ‖ρ(t)‖∞ ≤
K1
t + K2, and ‖D1/2ρ(t)‖2 ≤

K1
t + K2.
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Law of Large Numbers

Uniqueness of the McKean-Vlasov equation

The uniqueness of weak solutions to the M-V equation with logarithmic Coulomb interaction is a difficult
problem. There was no result in the literature except fo quadratic potentials.

Using infinite dimensional geometry on the Wasserstein space P2(R), and the theory of gradient flows in OPT
developed by Otto, Otto-Villani, ..., and Ambrosio-Gigli-Savare, we were able to prove the uniqueness of weak
solutions to the McKean-Vlasov equation (9) for general potentials with V ” ≥ K .

Theorem (LLX JSP2020)

Suppose that V be a C 2 function satisfying (4) and (5), and there exists a constant K ∈ R such that

V ′′(x) ≥ K , ∀ x ∈ R.

Let µi (t) be two solutions of the McKean-Vlasov equation (9) with initial data µi (0), i = 1, 2.

Then for all t > 0, we have

W2(µ1(t), µ2(t)) ≤ e−KtW2(µ1(0), µ2(0)).

In particular, the McKean-Vlasov equation (9) has a unique weak solution.
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Law of Large Numbers

Sketch of proof: Key points

The proof is inspired by Otto (2003), Otto-Villani (2000), Carrillo-MacCann-Villani (2003),
Villani (2009), and Ambrosio-Gigli-Savare (2005), and uses the following

Theorem (Blower2004, LLX JSP2020)

Assuming that V ∈ C2(R,R+) and there exists a constant K ∈ R such that V ′′ ≥ K . Then

HessP2(R)ΣV (µ) ≥ K .

We proved this result in August 2012 and noticed later (2013) from Villani’s 2nd book Optimal
Transport Old and New that Blower (2004) already proved the K -convexity of the Voiculescu
entropy.
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Law of Large Numbers

Weak Law of Large Numbers

By the precompactness of LN(t) and the uniqueness of the weak solution of the McKean-Vlasov
equation (9), we have the Weak Law of Large Numbers for the empirical measures of the
generalized Dyson Brownian motion.

Theorem (LLX JSP2020)

Suppose that LN(0) weakly converges to µ(0) ∈P(R). Let V be a C2 function satisfying (1),
(4) and (5) and V ′′ ≥ K for some constant K ∈ R.

Then the empirical measure LN(t) weakly converges to the unique solution µt of the
McKean-Vlasov equation (9) (equivalently (11)).

Moreover, for all p ∈ [1, 2), we have

Wp(E[LN(t)], µt)→ 0 as N →∞,

where the convergence is uniformly with respect to t ∈ [0,T ] for all fixed T > 0.

Recently, I extend this to all p > 1.
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Law of Large Numbers

A comment

Results for the McKean–Vlasov equation were first established by Chan [12] and Rogers and Shi
[49], who showed the existence of a solution for quadratic potentials V . The McKean–Vlasov
equation for general potentials V was studied in detail in the works of Li, Li, and Xie. In their
works [44] and [45], it was shown that, under very weak conditions on V , the solution of the
McKean–Vlasov equation would converge to an equilibrium distribution for times t >> 1. The
authors were able to interpret the time evolution under the McKean–Vlasov equation as a type of
gradient descent on the space of measures. This gives the complete description of the Dyson
Brownian motion on the macroscopic scale.

See Arka Adhikari, Jiaoyang Huang, Dyson Brownian motion for general and potential at the
edge, Probability Theory and Related Fields (2020) 178:893–950.
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Law of Large Numbers

Propagation of chaos: M. Kac 1954

Sznitman and Tanaka (1984): For exchangeable systems, Propagation of chaos is equivalent to
the LLN for the empirical measure of the system.

Theorem (Li-Li-Xie JSP2020)

Assume the conditions in the above Theorem holds. Let MN;k (t; dx1, · · · , dxk ) be the k-th
moment measure for the random probability measure LN(t, ·), that is, for any Borel sets
A1, · · · ,Ak ,

MN;k (t;A1, · · · ,Ak ) := E(LN(t,A1) · · · LN(t,Ak )).

Then we have

lim
N→∞

∫
Rk
ϕ(x1, · · · , xk )MN;k (t; dx1, · · · , dxk ) =

∫
Rk
ϕ(x1, · · · , xk )µt(dx1) · · ·µt(dxk )

for any continuous, bounded ϕ on Rk .

Xiang-Dong Li AMSS, CAS On the LLN and CLT for Dyson Brownian motion 41 / 55



Law of Large Numbers

Extension of HWI

We also extend Otto-Villani’s HWI inequality to the Voiculescu free entropy ΣV , the W2-Wasserstein distance
and the free Fisher information IV .

Theorem (Li-Li-Xie JSP2020)

Suppose that there exists a constant K ∈ R such that

V ′′(x) ≥ 2K , ∀x ∈ R.

Let µi ∈P2(R), i = 1, 2. Then for all t > 0, the HWI inequality holds

ΣV (µ1)− ΣV (µ2) ≤ W2(µ1, µ2)
√

IV (µ1)−
K

2
W 2

2 (µ1, µ2). (12)

In particular, for any weak solution to the McKean-Vlasov equation (11), we have

ΣV (µt)− ΣV (µV ) ≤ W2(µt , µV )
√

IV (µt)−
K

2
W 2

2 (µt , µV ), (13)

where

IV (µ) :=

∫
R
|V ′(x)/2− Hµ(x)|2dµ(x).
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Longtime behavior of the McKean-Vlasov limit

Question

In the case V (x) = x2

2
, Rogers and Z. Shi (PTRF1993), Chan (PTRF 1992) proved that

µt → µsc as t →∞.

It is natural to ask
Question: Under which condition on the potential V , it holds

µt → µV as t →∞

in the weak convergence topology or with respect to the W2-Wasserstein distance?
That is can we prove the following commutative diagram:

LN(t) =⇒ µt

⇓ ⇓ ?

LN =⇒ µV . (14)

If this is true, then with respect to the weak convergence on P(R) or the W2-Wasserstein
topology on P2(R), we have

lim
N→∞

lim
t→∞

LN(t) = lim
t→∞

lim
N→∞

LN(t).
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Longtime behavior of the McKean-Vlasov limit

Convex potential

Using the HWI inequality and argument in optimal transportation theory, we proved the following

Theorem (Li-Li-Xie JSP2020)

Suppose that V is C2-convex, i.e., V ′′ ≥ 0. Then, for all p ≥ 1, we have

Wp(µt , µV )→ 0 as t →∞.

ΣV : geodesically convex on P2(R); lower semi continuous with respect to the Wasserstein
topology on P(R); proper on any geodesic balls of P2(R).
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Longtime behavior of the McKean-Vlasov limit

Case of uniform convex potential

Using the optimal transportation theory, we can prove that

V ′′ ≥ K ⇒ HessW2
ΣV ≥ K .

That is to say, the Voiculescu free entropy ΣV is K -convex on the Wasserstein P2(R) if V ′′ ≥ K .

Theorem (Li-Li-Xie JSP2020)

Suppose that V is C2 and ∃ K ∈ R such that V ′′(x) ≥ K , ∀x ∈ R. Then for all t > 0, we have

ΣV (µt |µV ) ≤ e−2KtΣV (µ0|µV ),

W2(µt , µV ) ≤ e−KtW2(µ0, µV ).

In particular, if K > 0, then µt converges to µV with the exponential rate K in the
W2-Wasserstein topology on P2(R).
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Longtime behavior of the McKean-Vlasov limit

Free Log-Sobolev and Talagrand inequalities

To study non-uniform convex but convex case, we need the following free Log-Sobolev inequality
and free Talagrand transportation cost inequality.

Theorem (Ledoux-Popescu JFA2009)

Suppose that V is a C2, convex and there exists a constant r > 0 such that

V ′′(x) ≥ c > 0, |x | ≥ r .

Then there exists a constant C > 0 such that the free Log-Sobolev inequality holds: for all
probability measure µ with IV (µ) <∞ one has

ΣV (µ|µV ) ≤
2

C
IV (µ).

Moreover, the free Talagrand transportation inequality holds: there exists a constant
C = C(r , ρ, µV ,V ) > 0 such that

CW 2
2 (µ, µV ) ≤ ΣV (µ|µV ).
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Longtime behavior of the McKean-Vlasov limit

Convex potential which is uniform convex at infinity

Using the above free Log-Sobolev inequality and free Talagrand transportation inequality by Ledoux-Popescu
JFA 2009, and applying Otto’s argument to the McKean-Vlasov equation, we can prove the following

Theorem (Li-Li-Xie JSP2020)

Suppose that V is a C 2, convex and ∃ r > 0 such that

V ′′(x) ≥ K > 0, |x| ≥ r .

Then there exist two constants C1 > 0 and C2 > 0 such that

W 2
2 (µt , µV ) ≤

e−C1t

C2
ΣV (µ0|µ), t > 0.
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Longtime behavior of the McKean-Vlasov limit

Phase transition

Our theorems can apply to the following case:

V (x) = a|x |p with p > 2 and a > 0.

the Kontsevich-Penner model

V (x) =
ax4

12
−

bx2

2
− c log |x |.

Note that, V ′′(x) = ax2 + c
x2 − b ≥ 2

√
ac − b ≥ 0, for all x 6= 0 with a > 0, c > 0 and

4ac ≥ b2.

Our theorems can not apply to the double well potential

V (x) = ax4 − bx2, x ∈ R,

where a > 0 and b > 0 are constants.
The question whether µt → µV as t →∞ for the double well potential or more general
non-convex potentials remains open.
If there is phase transition, then

lim
N→∞

lim
t→∞

LN(t) 6= lim
t→∞

lim
N→∞

LN(t).
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Longtime behavior of the McKean-Vlasov limit

Double well potential

Let

V (x) =
1

4
x4 +

c

2
x2, x ∈ R,

where c is a constant. Johansson 1998: the density function of µV is given as follows:

When c < −2,

ρ(x) =
1

2π
|x |
√

(x2 − a2)(b2 − x2)1a<|x|<b,

where a2 = −2− c and b2 = 2− c.
µV has two supports [−b,−a] and [a, b] which are disjoint. By a previous result of
Biane-Speicher (2001), µt does not converge to µV . There is phase transition!

For c ∈ [0,∞), V is C2 convex and V ′′(x) ≥ 3 for |x | ≥ 1. In this case, W2(µt , µV )→ 0
with exponential convergence rate.

For c ∈ [−2, 0), the question whether W2(µt , µV )→ 0 (or even µt weakly converges to µV )
as t →∞ for the above double-well potential V remains open.

Conjecture arxiv2013/14 µt converges to µV weakly and in W2 as t →∞.

There is no phase transition! Donari-Martin, Groux and Maida (arxiv1605.09663, AIHP2018)
proved the above conjecture. See also LLX JSP2020 for affirmative result in more general
case.
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Functional Central Limit Theorem

Fluctuation and central limit theorem

By Ito’s calculus, for all f ∈ C2
b (R), we have

d〈LN(t)− µt , f 〉 =
1

N

√
2

βN

N∑
i=1

f ′(λiN(t))dW i
t

−
1

2

〈
LN(t)− µt ,V ′f ′

〉
dt +

1

N

(
1

β
−

1

2

)〈
LN(t), f ′′

〉
dt

+
1

2

∫
R2

f ′(x)− f ′(y)

x − y
(LN(t, dx)LN(t, dy) + µt(dx)µt(dy))dt.

Let

M f
N(t) :=

√
1

N

N∑
i=1

f ′(λiN(t))dW i
t .

To study the fluctuation of the McKean-Vlasov limit for (GDBM)V , let us introduce the
fluctuation process

YN(t) = N(LN(t)− µt).
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Functional Central Limit Theorem

Remark

(1) When V ′ = 0, i.e., in the case of standard Dyson Brownian motion, Anderson, Guionnet and
Zeitouni (2010) proved the Functional CLT for LN(t) with test function f = xn or more general
polynomials.

(2) When V (x) = x2

2
and β = 2, Israelsson (2001) proved that YN(t) is tight and the Stieltjes

transform of YN(t) converges to the Stieltjes transform of Yt , which implies that YN(t) weakly

converges to Yt . In 2008, Bender extended Israelsson’s result for V (x) = x2

2
to all β > 1.

(3) Dawson 1983 proved FCLT for mean-field model with weak interaction, where the normalized

constant is
√
N as in the usual CLT for i.i.d r.v. Hence GDBM has a very strong interaction and

cancellation.
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Functional Central Limit Theorem

Fluctuation and central limit theorem

Theorem (Li-Xie 2023)

Let
YN(t) = N(LN(t)− µt).

Suppose that V satisfies the conditions of (1), (4) and (5), and YN(0) converge in distribution in

a suitable distribution space W−k,p
V (R) to Y0. Then

YN(t)→ Yt in distribution in C([0,T ],W−k,p
V (R)),

where Yt is a generalized random field valued Gaussian process, and satisfies the following
stochastic evolution equation

dYt =

√
2

β
dBt +A∗µt

Ytdt + (
1

β
−

1

2
)µ′′t dt. (15)
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Functional Central Limit Theorem

Fluctuation and central limit theorem

Here Bt is a W−k,p
V (R)-valued Gaussian process of mean zero, whose covariance processes are

given by: for any ϕ1, ϕ2 ∈ C∞0 (R), and s, t ∈ [0,T ],

cov [〈Bt , ϕ1〉, 〈Bs , ϕ2〉] =

∫ s∧t

0

∫
R
ϕ′1ϕ

′
2µu(dx)du,

and for cylinder functional F : W−k,p
V (R)→ R.

AµtF (µ) =

(
1

2
(V ′µ)′ − ((Hµt)µ)′ − ((Hµ)µt)

′
)
∂F

∂µ
.

H denotes the Hilbert transform on the distributions, (V ′µ)′ denotes the derivative of the
distribution V ′µ in the sense of distribution, etc.

Let mt(f ) = E[〈Yt , f 〉]. We can derive from (15) that mt = E[〈Yt , ·〉] satisfies the following
differential equation in the sense of distribution

dmt =

(
1

β
−

1

2

)
µ′′t −

1

2
(mtV

′)′ + (Hmt)µ
′
t + (Hµt)m

′
t ,

where Hmt is the Hilbert transform of mt .
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Wishart-Dyson Brownian motion

Dyson Brownian motion for Wishart ensemble

Recently, with Rong Lei, we have studied the Dyson Brownian motion associated with the Wishart-Laguerre
ensemble on [0,∞)N

PN,M (x1, . . . , xN ) =
1

ZN,M

∏
i<j

|xi − xj |β
N∏
j=1

xa−p
j exp

(
−N

N∑
i=1

V (xi )

)

where a = βM
2 , p = 1 + β

2 (N − 1), M ≥ N, and β = 1 for real and β = 2 for complex.

We can prove the uniqueness of the corresponding McKean-Vlasov equation and the longtime convergence
theorem for the McKean-Vlasov equation. Hence we can establish the LLN and Propagation of Chaos for the
empirical measure of the Dyson Brownian motion associated with the Wishart-Laguerre ensemble and the Jacobi
ensemble. The CLT can be also proved without difficulty. These are included into the PhD thesis of Rong Lei.
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Wishart-Dyson Brownian motion

Thank you for your attention !
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